Integer sequences with proscribed differences and bounded growth rate
dc.contributor.author | Hemminger, R. L. | en |
dc.contributor.author | McKay, B. D. | en |
dc.date.accessioned | 2025-03-24T01:25:53Z | |
dc.date.available | 2025-03-24T01:25:53Z | |
dc.date.issued | 1985 | en |
dc.description.abstract | Let n, b and c be positive integers with b ≤ c and let A = aiini = 0n be a sequence of integers such that 0 = a0 < a1 <...<an and ai + b ≤ ai + c for all i with 0 ≤ i ≤ n - b. We find all n function of b, c and k, k a positive integer, so that all such sequences have no two members that differ by exactly k. | en |
dc.description.status | true | en |
dc.format.extent | 11 | en |
dc.identifier.other | Scopus:46549099746 | en |
dc.identifier.uri | https://dspace-test.anu.edu.au/handle/1885/733733199 | |
dc.identifier.url | http://www.scopus.com/inward/record.url?scp=46549099746&partnerID=8YFLogxK | en |
dc.language.iso | English | en |
dc.source | Discrete Mathematics | en |
dc.title | Integer sequences with proscribed differences and bounded growth rate | en |
dc.type | Article | en |
local.bibliographicCitation.lastpage | 265 | en |
local.bibliographicCitation.startpage | 255 | en |
local.contributor.affiliation | Hemminger, R. L.; Vanderbilt University | en |
local.contributor.affiliation | McKay, B. D.; Vanderbilt University | en |
local.identifier.citationvolume | 55 | en |
local.identifier.doi | 10.1016/S0012-365X(85)80002-9 | en |
local.identifier.pure | 495cbeb0-24ba-408c-901f-b566d235b6dd | en |
local.type.status | Published | en |