Test environment running 7.6.3
 

Sharp variation-norm estimates for oscillatory integrals related to Carleson's theorem

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We prove variation-norm estimates for certain oscillatory integrals related to Carleson's theorem. Bounds for the corresponding maximal operators were first proven by Stein and Wainger. Our estimates are sharp in the range of exponents, up to endpoints. Such variation-norm estimates have applications to discrete analogues and ergodic theory. The proof relies on square function estimates for Schrodinger-like equations due to Lee, Rogers and Seeger. In dimension 1, our proof additionally relies on a local smoothing estimate. Though the known endpoint local smoothing estimate by Rogers and Seeger is more than sufficient for our purpose, we also give a proof of certain local smoothing estimates using Bourgain-Guth iteration and the Bourgain-Demeter l2 decoupling theorem. This may be of independent interest, because it improves the previously known range of exponents for spatial dimensions n ≥ 4.

Description

Citation

Source

Analysis and PDE

Book Title

Entity type

Access Statement

License Rights

Restricted until